
Avestia Publishing
International Journal of Computer Vision, Machine Learning and Data Mining
Volume 1, Year 2015
DOI: TBA

Rearrangement of Attributes in Information Table and its Application for
Missing Data Imputation

Gongzhu Hu1, Feng Gao2
1Department of Computer Science, Central Michigan University

Mount Pleasant, Michigan, USA
hu1g@cmich.edu

2Science School, Qingdao Technological University
Qingdao, China

gaofeng99@sina.com

Abstract- In rough set theory, data is usually stored in an infor-
mation table with attributes divided into condition attributes and
decision attribute. Due to the uncertainty in the data, the data set
is represented by formal approximations and “condition-decision”
rules can be deducted from the approximations based on the as-
sumption that some sort of causal relations exist between different
attributes. In this paper, we propose an attribute rearrangement
approach to extract logical relations (maybe considered as causal
relations) between different attributes in information tables. We
introduce the notion of optimal logic attribute and optimal attribute
logical flow based on the roughness of the rearrangements to ex-
plore the logical relations between attributes. This rearrangement
approach can be used to address the missing data problem for
most data analysis tasks. We apply the attribute rearrangement
approach to the missing value imputation problem by rearranging
the attributes such that the attribute with missing values becomes
the decision attribute so that we can decide how to deal with the
missing value based on the logical relations extracted from the
rearrangement. In the case that the rearrangement is an optimal
attribute logical flow, we impute the missing data by the deducted
decision rules, otherwise the missing data is imputed by other
method. We illustrated this approach with a few simple examples.

Keywords: Rough set, rearrangement of attributes, roughness of
rearrangement, optimal attribute logical flow, missing data imputa-
tion.
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1. Introduction
In rough set theory [21, 23, 24], the information of a real

world application is normally expressed as an information table that
represents the data for the application. A simple example is given
in Table 1 that shows the possible results of a physician’s diagnosis

of six patients.
In this table, e1,e2,e3,e4,e5,e6 are called cases (also called

objects, records, or observations). The cases are associated with
attributes that may draw values from different domains. The at-
tributes of an information table are divided into two categories:
condition attributes and decision attributes. An attribute in an in-
formation table is identified as decision attribute simply because it
has a special importance or it is the one we want to focus our at-
tention on. For example, flu is identified as the decision attribute
in Table 1 because the physician is concerned about if the patients
have flu or not. However, the same information table may be looked
at from different points of view when we want to focus on differ-
ent attributes. Taking Table 1 as an example, the physician may
be concerned about the patients’ temperature and want to find out
those patients with flu having high temperature or normal tempera-
ture. In this case, temperature rather than flu should be the decision
attribute. Similarly, headache or muscle pain may be the decision
attribute if the doctor is concerned about these attributes of the pa-
tients. This thought leads to a need of rearrangement of the at-
tributes with each rearrangement having a different attribute as the
decision attribute.

Table 1: An information table.

Case Condition Decision
headache muscle pain temperature flu

e1 yes yes normal no
e2 yes yes high yes
e3 yes yes very high yes
e4 no yes normal no
e5 no no high no
e6 no yes very high yes

The basic idea of using rough set for data analysis is for
make predictions based on the available data as decision rules, in
the form of condition→ decision, that are derived from the rough
sets in the data. So, can we make decisions on the missing values
(thus the missing values are imputed) rather than on the original
decision attributes? We proposed a new method to answer this
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question. The main idea is to treat an attribute (column in an
information table) with missing value as the decision target, and the
original decision target is considered a regular condition attribute.
The columns of the information table are permuted (rearranged) so
that each attribute column with missing values has a chance to be
treated as the decision target.

To use this method to deal with information table and its
rearrangements, we should consider the following questions:

1. Which of the rearrangements will yield rough sets and which
will yield non-rough sets? How to decide?

2. In what conditions all rearrangements will result in rough
sets, and what are the conditions for which all rearrange-
ments will produce non-rough sets?

3. Are there logical (causal) relations between attributes? How
to express such relations?

4. How can we use the logical relations between attributes to
make the predictions?
We address these questions by introducing several new con-

cepts and a method for missing value imputation, that are the main
contributions of this paper:
• New concepts: roughness of rearrangement based on the up-

per and lower approximations of rough set, optimal logical
attribute, and optimal logical attribute flow.

• New method: We propose a method to support decision mak-
ing in missing data imputation using the attribute rearrange-
ment based on these concepts.

2. Related Work
Two major topics are related to the work presented in this

paper: missing data imputation and rough set. For missing data im-
putation, there are enormous amount of work on ad hoc and statistic
approaches in the literature but only a few methods were proposed
using rough sets. So we shall first give a brief review on the gen-
eral approaches for missing data, and then some related work that
used rough set for solving the missing data imputation problem. For
rough set, since we will include an introduction of rough set basics
in Section 3, we shall only discuss the issue of roughness measures
in this section.

2.1. Missing Data Imputation
There are many different ways to handle missing data [3,

5, 11]. The simplest is to ignore missing data from analysis, ei-
ther complete-case or available-case. In complete-case analysis,
records with missing values are removed. This may drop a large
portion of the sample when missing values occur in many variables.
In available-case analysis, only those records that have no missing
values in a specified set of variables are used. This approach may
produce biased estimate if observation is not missing completely at
random (MCAR).

Some ad hoc methods can also be used, such as recode all
the missing values with a special common value. However, the spa-
cial value may be just as good as other normal values unless the
analysis algorithm treats it differently. For longitudinal studies, the
Last Value Carried Forward (LVCF) approach may be used that the
last observed value of the same subject is carried forward to replace
the current missing value. This approach may lead to biased results,

though, for example, the estimated parameters (e.g. mean values)
may be distorted.

Statistic methods are effective to handle the missing data
problem [17] if the missingness is at random. For numeric vari-
ables, replacing missing values with the column mean is a simple
solution. The basic idea with statistic methods is to treat the missing
value as a classification/prediction problem. For example, regres-
sion (linear and non-linear) is one of the most commonly used ap-
proaches where the missing values are predicted from the observed
values [16]. To overcome the problem of bias, multiple imputation
[26, 31] is often necessary. In multiple imputation, n (typically, 5
to 10) different replacement sets of values through imputation to
generate n completed sets of data. The variations between the n
data sets reflect the uncertainty in the imputation. Analysis is then
conducted on the n compete data sets.

Some other statistic methods that are typical for classifica-
tion and prediction tasks have also been applied to deal with missing
data, such as spline exploration [4] that is to come up with a spline
function as the prediction model, and Naı̈ve Bayes [20, 25] that is
based on the posterior probability of the predicted value based on
prior probabilities of the observed values. These numerical and an-
alytical methods can deal with numerical type missing data. How-
ever, if the data is not numeric or the data is not big enough to sup-
port accurate numerical interpolation, the attribute rearrangement
method can be an option.

2.2. Imputation of Missing Data using Rough Sets
Many different methods have been used to impute missing

data, including those using rough sets. A comparative and experi-
mental study of nine different approaches to missing attribute val-
ues was provided in [9]. These approaches are mostly ad hoc (such
as ignoring objects with unknown attribute values, treating missing
values as special values, replacing a missing value with all pos-
sible values in the attribute’s domain, etc.) or probabilistic (most
common value, concept most common value, C4.5 decision tree,
event-covering, etc.).

Rough set approaches for handling missing values were in-
troduced in 1990’s [10, 12]. Grzymala-Busse proposed rough set
approaches to deal with three types of missing values: loss values,
attribute-concept values, and “do not care” conditions [7, 8].

The software toolkit Rough Set Exploration System (RSES)
[1], developed by a team of researcher some of whom were in-
volved in the original rough set theory research, uses the traditional
approaches to deal with missing attribute values: removing objects
with missing values, filling missing values with most common value
(nominal) or the mean (numeric) of the attribute, treating missing
value as information (null as regular value), and analysis using only
the objects with complete data for reduct/rule calculation.

In [13], the indiscernibility relation in rough set was en-
hanced to include individual treatment of missing values using two
different approaches based on the assumption that not all missing
values are semantically equal. An algorithm was provided in this
study to create sub-optimal flexible indiscernibility relations for in-
formation with missing values.

A rough clustering approach dealing with missing data was
proposed in [14]. In this approach, traditional clustering techniques
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(such as K-means) was combined with soft computing (fuzzy and
rough) to deal with the uncertainty in the data. It was reported in
the study that rough K-means and fuzzy-rough K-means clustering
algorithms yielded better performance.

Characteristic relation was introduced in [19, 18] to describe
the relations of the objects with missing values. Lower and upper
approximations were defined in several different ways based on the
characteristic relations. The study included experiments with sev-
eral real data sets from the South African antenatal sero-prevalence
survey of 2001 with HIV positive as the decision attribute. It
claimed that the missing value imputation approach resulted in 99%
accuracy of the HIV prediction.

An artificial neural network (ANN) approach was presented
in [29] that used rough set theory (RST) to reduce the dimension-
ality of the attributes through its reduct. Comparisons of the AN-
NRST (combination of ANN and RST) approach with other meth-
ods were given showing that the prediction accuracy using AN-
NRST was about the same as pure ANN without dimensionality
reduction, and outperformed k-NN.

The above is a brief summary of previous work on miss-
ing data imputation using rough set. All of these methods kept
the structure of the data (i.e. information table) with the original
decision attribute unchanged. The method proposed in this paper
differs from these approaches in a major way: the attribute with
missing values is swapped with the original decision attribute so
that the missing value can be “predicted” using the rules derived
from rough set.

2.3. Roughness Measures
The basic premise in rough set theory is that a set of data

elements (cases) can be formally approximated by a pair of subsets
based on the indiscernibility relation. The pair of subsets are the up-
per and lower approximations of the given data set. To evaluate the
goodness of the approximation, Pawlak introduced the measures of
accuracy and roughness [22].

Let T be an information table, D be the decision attribute
of T , Y be a concept under D, A(Y ) and A(Y ) be the upper and
lower approximation, respectively. The roughness is a measure of
the degree of certainty of the underlying rough set.

The accuracy with respect to a partition under α , is the ra-
tio of the lower approximation and upper approximation, and the
roughness, beta, is 1 minus accuracy:

α =
A(Y )
A(Y )

, β = 1−α (1)

Researchers (such as [2, 15, 30]) have pointed out some limitations
of the Pawlak’s accuracy and roughness measures. The main issue
is that Pawlak’s roughness measure does not consider the granular-
ity of the partitions of the data set under the indiscernibility rela-
tion. Some modified roughness measures were proposed, including
rough entropy [2], excess entropy [30], knowledge granulation [15],
and strong Pawlak roughness [32].

3. Basics of Rough Set
Rough set theory proposed by Pawlak [21] provides a nat-

ural and efficient way for vague and uncertain data analysis use-
ful for knowledge processing, especially for information systems.

The rough set theory overlaps with some other approaches (such as
fuzzy set theory) for analysis of uncertain data, but it is an indepen-
dent and distinct method dealing with uncertainty in the data. The
prominent feature of using rough set theory in applications is that
it relies only the data alone without any model assumptions such as
underlying distribution of the data nor the membership measure of
the data items used in fuzzy sets. As a soft computing paradigm
and a key “non-traditional” AI area [6], rough set data analysis has
been applied to many real-world problems, from economics, medi-
cal research, to legal reasoning.

In this section, we shall briefly introduce the basic concepts
and definitions of rough set to make the paper self-contained. De-
tails of these concepts and definitions can be found in the literature,
such as [23, 24].

Data collected can be presented in an information table. An
information table T is a 4-tuple

T = (U,A,V, f ) (2)

where U = {x1, · · · ,xn} is a finite set of cases (objects, observa-
tions or records), commonly called the universe, A = {a1, · · · ,am}
is a finite set of attributes, V is a set of values, and f is a deci-
sion function. Each a j is associated with a set of permissible values
Vj ⊂V . The attributes A is further divided into two groups C and D:
C∪D = A,C∩D = ∅, where C is a set of condition attributes and
D is the decision attribute. The decision function f is a mapping
f : C→ D.

Take the information in Table 1 as an example, U =
{e1,e2,e3,e4,e5,e6}, A = {headache, muscle pain, temperature,
flu} where C = {headache, muscle pain, temperature} is the set of
condition attributes and D = {flu} is the decision attribute. These
attributes take values from the value domains Vheadache = {yes, no},
Vmuscle pain = {yes, no}, Vtemperature = {normal, high, very high},
and Vf lu = {yes, no}. The decision function f is a mapping:

f : Vheadache×Vmuscle pain×Vtemperature→Vf lu (3)

The set of cases U can be partitioned into disjoint sub-
sets with respect to an indiscernibility relation on the condition at-
tributes.

Definition 1 (indiscernibility relation). Given an information ta-
ble (U,A,V, f ), an indiscernibility relation defined on B ⊆ A, de-
noted as I(B), is defined by

I(B) = {(x,y) ∈U×U |Vb(x) =Vb(y),∀b ∈ B} (4)

where Vb(x) is the value of the b attribute of case x. We also denote
the relation as (x,y) ∈ I(B).

Simply put, the cases in U are partitioned into equal-valued
subsets on the attributes in B under indiscernibility relation. An
indiscernibility relation is an equivalence relation.

The family of all equivalence classes in the partition under
B is denoted U/B. In the example given in Table 1, the equivalence
classes under each of the condition attributes are

U/headache = {{e1,e2,e3},{e4,e5,e6}}
U/muscle pain = {{e1,e2,e3,e4,e6},{e5}} (5)
U/temperature = {{e1,e4},{e2,e5},{e3,e6}}
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Definition 2 (definable set and rough set). An indiscernible set is
called an elementary set. A finite union of elementary sets is called
a definable set. Sets that are not definable are called rough sets.

Definition 3 (concept). An set of cases X ⊂ U is a concept if
∀xi,x j ∈ X ,VD(xi) =VD(x j).

For example, in Table 1, {e2,e3,e6} is a concept with
Vf lu = yes, while {e1,e4,e5} is another concept with Vf lu = no.

Definition 4 (reducible attribute). If I(A) = I(B) for B ⊂ A, B is
a reduct of A and the attributes in A−B are reducible. An attribute
set without reducible attributes is said to be a minimal reduct.

Definition 5 (decision rule). Given an information table
(U,A,V, f ), a decision rule based on the rough set theory is in the
form of

V (P)→V (Q) (6)

where P,Q⊂ A, and V (.) is the values of its parameter attributes. A
rule is a prediction of the the values of Q when the values of P are
given.

For example, some decision rules from the information table
in Table 1 are

(temperature,normal) → ( f lu,no) (7)
(headache,no) and (temperature,high) → ( f lu,yes)

Definition 6 (upper and lower approximations). Let Y be a con-
cept in an information table. The lower approximation of Y , de-
noted A(Y ) is the greatest definable set contained in Y . That is,

A(Y ) = max
i
(Xi),Xi ⊆ Y, and Xi is definable. (8)

Similarly, the upper approximation of Y , denoted A(Y ) is the small-
est definable set containing in Y :

A(Y ) = min
i
(Xi),Xi ⊇ Y, and Xi is definable. (9)

For example, in the information table shown in Table 2, for
the concept Yheadache=yes, A(Y ) = {e1,e2,e3,e4,e6} and A(Y ) =
{e2}.

Definition 7 (boundary). The boundary of a concept of an infor-
mation table is A(Y )−A(Y ).

4. Attribute Rearrangment
As mentioned in the Introduction section that one of the crit-

ical pre-analysis tasks for data analysis is to deal with missing val-
ues. In this section, we shall present a new method using rough set
that can be used for missing value imputation.

4.1. Attribute Rearrangement
For a given information table T = (U,A,V, f ) where A =

C∪D with the set of condition attributes C = {a1, · · · ,ak} and de-
cision attribute D = {d}, we can create a new information table
T = (U,A′,V, f ) where A′ is a rearrangement of A: A′ = C′ ∪D′,
where C′ = (C−{ai})∪{d} and d′ = {ai}. That is, the original
decision attribute is swapped with a condition attribute ai so that ai
becomes the new decision attribute.

For example, by swapping the decision attribute f lu with the
condition attribute headache in Table 1, we obtain a new informa-
tion table shown in Table 2.

Table 2: Information table with headache as decision attribute.

Case Condition Decision
flu muscle pain temperature headache

e1 no yes normal yes
e2 yes yes high yes
e3 yes yes very high yes
e4 no yes normal no
e5 no no high no
e6 yes yes very high no

Likewise, making temperature and muscle pain as the de-
cision attribute, we obtain information tables shown in Table 4 and
Table 3, respectively.

In the following, we will analyze the properties of rearrange-
ments of a given information table, and provide several proposi-
tions.

Table 3: Information table with temperature as decision attribute.

Case Condition Decision
headache muscle pain flu temperature

e1 yes yes no normal
e2 yes yes yes high
e3 yes yes yes very high
e4 no yes no normal
e5 no no no high
e6 no yes yes very high

Table 4: Information table with muscle pain as decision attribute.

Case Condition Decision
headache flu temperature muscle pain

e1 yes no normal yes
e2 yes yes high yes
e3 yes yes very high yes
e4 no no normal yes
e5 no no high no
e6 no yes very high yes

Proposition 1. An information table T is definable (i.e. non rough
set) if and only if the decision attribute D is reducible. That is, C∪D
and C define the same indiscernibility relation and elementary sets.
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Let T be a rearrangement of a given information table T . If
T is definable (i.e. not a rough set), its boundary set is empty ac-
cording to the rough set theory. Hence, any elementary set based on
all condition attributes C belongs to the same concept. This implies
that C∪D does not change the indiscernibility relation defined by C.
Thus D is reducible attribute with respect to (C∪D). On the other
hand, if T is a rough set, its boundary set is non-empty. This im-
plies that the cases in at least one of the elementary sets defined by
C belong to different concepts. Hence, by adding D to the attribute
set C, the elementary sets defined by C∪D has changed, indicating
that D is not reducible.

For example, let’s consider the information table in Table 1.
It is easy to see that the union of the elementary sets defined by
the three condition attributes (headache, muscle pain, temperature)
is {e1}∪{e2}∪{e3}∪{e4}∪{e5}∪{e6}. By adding the decision
flu, the elementary sets defined by (headache, muscle pain, temper-
ature, flu) is also {e1}∪ {e2}∪ {e3}∪ {e4}∪ {e5}∪ {e6}. Hence
flu is a reducible attribute with respect to (headache, muscle pain,
temperature, flu). This indicates that the information table in Table
1 is definable (not a rough set).

On the other hand, the information table in Table 2 is a rough
set because the attribute headache is not reducible with respect to
(headache, muscle pain, temperature, flu).

Proposition 2. Assume that the attribute set C∪D of information
table T has n+ 1 attributes. If any n-attribute subset of C∪D is
a minimal reduct with respect to C∪D, all rearrangements of T is
definable.

Let T = C′ ∪D′ be any arrangement of T . Since all n-
attribute sets are minimal reduct, C′ is a minimal reduct. Hence
D′ is reducible. From Proposition 1, T is definable.

Let’s consider an example in Table 5 with three attributes
(A,B,C). Since any of the two attributes (A,B), (A,C), or B,C) is a
minimum reduct, any rearrangement of the attributes is non-rough.

Table 5: Any rearrangement of this information table is definable.

Case Condition Decision
A B C

1 yes 3 yes
2 no 1 no
3 no 2 yes
4 yes 2 no

Proposition 3. If the set of all attributes C∪D of information table
T is a minimum reduct by itself, any rearrangements of T is a rough
set.

Since C∪D is a minimum reduct of T , for any rearrange-
ment T with attributes C′∪D′, the attribute D′ is not reducible. T
is a rough set according to Proposition 1.

Consider the information table in Table 6. The set of all at-
tributes (headache, temperature, flu) is a minimum reduct, so any
rearrangement of the information table is a rough set.

Proposition 1 is the answer to question 1 raised in Introduc-
tion, whereas Propositions 2 and 3 answered question 2.

5. Roughness of Rearrangement and Optimal Logic
In this section, we will introduce the concept of roughness

of rearrangement and associated properties that lays a foundation
for a method that can be used for missing value imputation.

Table 6: C∪D is minimum reduct.

Case Condition Decision
headache temperature flu

e1 yes normal no
e2 yes high yes
e3 yes very high yes
e4 no normal no
e5 no high no
e6 no very high yes
e7 no high yes
e8 no very high no

In particular, we introduce the concept of optimal logical at-
tribute and optimal logical attribute flow to answer the question 3
raised in Introduction.

Pawlak first introduced two certainty measures of rough sets:
accuracy and roughness based on the lower and upper approxima-
tions [22].

Quite a few different roughness measures were proposed,
such as [15, 30], based on Pawlak’s original definition to address its
limitations and apply to different situations. In this paper, we use
Pawlak’s definition, but apply to the rearrangements of an informa-
tion table to find the optimal logical concept and logical attribute
flow, for the purpose of missing data imputation.
Definition 8 (roughness). The roughness of rearragement T on
concept Y is defined as

β (TY ) =
|A(Y )−A(Y )|
|A(Y )|

(10)

where |x| is the cardinality of the set x.

Since |A(Y )| ≤ |A(Y )|, it is clear that 0≤ β (TY )≤ 1. From
the definitions of upper and lower approximations, the roughness
β (TY ) is actually a measure of the certainty of the logical relation-
ship C→D in the rearrangement T . When β (TY ) is close to 1, the
certainty is small, whereas when β (TY ) is close to 0, the certainty
is large.

For the information table and its various rearrangements in
Table 1-4, we can calculate the roughness of some concepts as
shown in Table 7.

Roughness of a rearrangement TY on concept Y can be con-
sidered as an indicator of the logical relation between the condi-
tion attributes and the decision attribute. The lower the value of
β (TY ), the higher certainty of the logical relation. When rough-
ness is 0, the logical relation C → D is completely certain. Fur-
thermore, for the same rearrangement, the roughness may differ
for different concepts. For example, β (T

(3)
temperature = very high) =

2
3 ,

β (T
(3)

temperature = normal) = 0, and β (T
(3)

temperature = high) =
2
3 . This in-

dicates that when the concept temperature = normal is concerned,
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the logical relation C→ D of Table 3 certainly holds. In this exam-
ple, there are three concepts defined by the decision attribute tem-
perature. In general, there are k concepts defined by the decision
attribute in an information table. On one of the concepts the rough-
ness may be most certain. This leads to the following definition.

Table 7: Calculation of roughness of rearrangements T (i).

T (i) Concept Y A(Y ) Roughness
A(Y ) β (T

(i)
Y )

T (1) flu = yes {e2,e3,e6} (3-3) / 3 = 0{e2,e3,e6}

T (2) headache = yes {e1,e2,e3,e4,e6} (5-4) / 5 = 0.8{e2}

T (3) temperature=very high {e2,e3,e6} (3-1) / 3 = 0.67{e6}

T (3) temperature = normal {e1,e4} (2-2) / 2 = 0{e1,e4}

T (4) muscle pain = yes {e2,e3,e6} (3-3) / 3 = 0{e2,e3,e6}

Definition 9 (optimal logic concept). Let T be a rearrangement of
an information table with k concepts Y1, · · · ,Yk defined by the deci-
sion attribute. Yi is called the optimal logic concept if the roughness
β (TYi) is the smallest:

β (TYi) = min
1≤ j≤k

(β (TY j)) (11)

For example, in the rearrangements T (i) given in Tables 1-4 the
optimal logic concepts are:

Rearrangement Optimal Logic Concept Y
T (1) flu = yes; flu = no
T (2) headache = yes; headache = no
T (3) temperature = normal
T (4) muscle pain = yes; muscle pain=no

An optimal logic concept represents a most certain log-
ical relation C → D in an rearrangement. For example, in
the rearrangement T 3, when the values of flu, headache, and
muscle pain are given, we can conclude about whether the
temperature in normal with the highest certainty, but the con-
clusion about the temperature is high or very high is less cer-
tain.

Now, we introduce the idea of optimal logical flow of
attributes.

Let T = (U,A,V, f ) be an information table with at-
tributes A = {a1, · · · ,an}. For each attribute ai ∈ A, i =
1, · · · ,n, we create a rearrangement T

(i)
Y with ai as the de-

cision attribute and Yai=xi be the selected concept. Also,
let β (T

(i)
Y ) be the roughness of T

(i)
Y . We can then sort

β (T
(i)

Y ), i = 1, · · · ,n, in descending order.

Definition 10 (optimal logical flow of attributes). An or-
dered list of attributes ak1 → ak2 → ··· → akn ,1 ≤ k j ≤ n is
an optimal logical flow of information table T for β (T

(k1)
Yx1

)≥

β (T
(k2)

Yx2
)≥ ·· · ≥ β (T

(kn)
Yxn

).

The procedure to calculate an optimal flow is given in
Algorithm 1.

Algorithm 1: Optimal logical flow
Input: T = (U,A,V, f ) — an information table with

A = {a1, · · · ,an}
Input: S = (a1 = v1, · · · ,an = vn) — a selection of

attribute values
Output: Optimal logical flow of T for S

1 begin
2 foreach ai ∈ A do
3 Create a rearrangement T (i) with ai as the

decision attribute.
4 Let Yai=vi be the selected concept.
5 Calculate roughness β (T

(i)
Yai=vi

).
6 end
7 sort β (T

(i)
Yai=vi

), i = 1, · · · ,n in descending order.
8 Let the attributes in the sorted list be ak1 , · · · ,akn .
9 Create a list L with attributes ak1 , · · · ,akn , in that

order.
10 return L.
11 end

Optimal logical flow indicates the logical relationships
among the attributes in an information table under a group
of selected concepts. The last attribute in the ordered list,
akn , which yields the smallest roughness value, is the optimal
logic attribute. The logical relationship (A−{akn})→ {akn}
has the best fit with the observed data.

Let’s consider the information table in Table 1 as an
example. For the attributes (headache, muscle pain, temper-
ature, flu), we take (yes, yes, very high, yes) as the selected
concepts. For each of the attributes as the decision attribute
(and hence the rearrangements in Tables 2-4), the roughness
values are (see Table 7):

β (T
(1)
f lu=yes) = 0 (12)

β (T
(2)

headache=yes) = 0.8

β (T
(3)

temperature=veryhigh) = 0.67

β (T
(4)

muscle pain=yes) = 0
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The ordering of these values is 0.8 > 0.67 > 0 ≥ 0
and their corresponding concepts are (headache=yes, tem-
perature=very high, muscle pain=yes, flu=yes). Hence, the
attribute flow headache → temperature → muscle pain →
f lu is an optimal flow. This means that headache(yes)→
temperature(veryhigh)→ muscle pain(yes)→ f lu(yes) re-
flects a logical implication relationship among the attributes
based on the observed data. Here either muscle pain=yes or
flu=yes can be the optimal logical attribute.

On the other hand, if we select (no, no, normal, no)
as the group of concepts under consideration, we have these
roughness values:

β (T
(1)
f lu=no) = 0 (13)

β (T
(2)

headache=no) = 0.8

β (T
(3)

temperature=normal) = 0

β (T
(4)

muscle pain=no) = 0

With the ordering of these roughness values, there are
thee different optimal flow with any of the three attributes flu,
temperature, and muscle pain (with roughness value 0) as the
optimal logical attribute (last in the ordering). For example,
headache→ f lu→ temperature→muscle pain is one of the
optimal flows, indicating that headache(no) → f lu(no) →
temperature(normal)→ muscle pain(no) and the other two
corresponding logical relationships are best implied in the
data.

6. Missing Value Imputation with Rearrangement of
Attributes

In this section, we shall present an application using re-
arrangement of rough sets. The application is to impute miss-
ing data in information tables that is one of the most important
tasks in the pre-processing stage of almost any data analysis
problem.

Missing value is a persistent problem for almost all data
analysis tasks in the real world. Many approaches were pro-
posed in the literature to deal with missing values [5, 27, 28].
The most basic approaches are ad hoc (such as ignore records
or attributes with missing values, or replace missing values by
a default value such as 0 for numeric data) or statistic based
(such as replace missing values with the average of the at-
tribute, the most frequent value of the attribute, or random val-
ues based on the estimated distribution of the available data on
the attribute). Each of these methods has its advantages and
disadvantages. For example, using the most frequent value
of the attribute to replace the missing data assumes that the
attribute is a random variable. But in practice, an attribute

of an information table is hardly random, rather, it may logi-
cally relate to other attributes (e.g. causal relationship). The
logical relationship may be strong or weak depending on the
observed data.

If the data was not in the form of condition/decision,
we can select one attribute as the decision and regard other
attributes as the condition attributes and therefore form an in-
formation table to extract relations between attributes for fur-
ther missing data imputation.

In this section, we apply the attribute rearrangement
idea to the missing data imputation problem. The basic idea
is to create a rearrangement of the original information ta-
ble such that the attribute with to-be-imputed missing data
becomes the decision attribute, and then find the logical re-
lationship between this attribute and other attributes. If the
relationship is strong, we can use the decision rules derived
from the rough set theory to determine the value of the miss-
ing items; on the other hand, if the relationship is weak, we
then impute the missing items using traditional statistic ap-
proach such as more frequent value replacement. This pro-
cess is outlined in Algorithm 2.

Algorithm 2: Imputation with rearrangement
Input: T = (U,A,V, f ) — an information table with

A = {a1, · · · ,an}
Input: am — the attribute with to-be-imputed missing

data
Input: v — a value of am
Input: b — threshold of roughness measure
Output: T ′ — information table of T with missing

data under am imputed
1 begin
2 Create a rearrangement T ′ from T with am as the

decision attribute.
3 Let Yam=v be the selected concept.
4 Calculate roughness β (T ′Yam=v

).
5 if β (T ′Y )≤ b or am is optimal logical attribute then
6 Derive decision rules for T ′.
7 Assign values for missing items on am based

on decision rules
8 else
9 Assign values for missing items on am using

most frequent value.
10 return T ′.
11 end

We now illustrate this proposed imputation approach
with two examples based on the information table in Table 6.

Example 1. In this example, the value on the headache at-
tribute of e8 is missing as shown given in Table 8(a) with ∗
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representing the missing value.
By rearranging the attributes to make headache (that

has missing value) the decision attribute, the rearrangement
T ′ is shown in Table 8(b) with cases of complete data (i.e.
case e8 with missing value is excluded).

Table 8: Imputation for missing value on headache.

(a) A value on headache is missing.

Case Condition Decision
headache temperature flu

e1 yes normal no
e2 yes high yes
e3 yes very high yes
e4 no normal no
e5 no high no
e6 no very high yes
e7 no high yes
e8 ∗ very high no

(b) Rearrangement with cases of complete data.

Case Condition Decision
flu temperature headache

e1 no normal yes
e2 yes high yes
e3 yes very high yes
e4 no normal no
e5 no high no
e6 yes very high no
e7 yes high no

For the selected attribute group (flu=yes, temper-
ature=high, headache=yes), the roughness measure is
β (T ′headach=yes) = 1 indicating that the logical relationship be-
tween (flu, temperature) and headache is weak. Hence, we
consider the value of headache random. Therefore, we can
use traditional statistic approach such as most frequent value
replacement to decide that headache = no.

Example 2. In this example, the value of the temperature at-
tribute of case e6 is missing shown in Table 9(a). Using the
seven cases with complete data to rearrange the attribute so
that temperature becomes the decision attribute, as shown in
Table 9(b).

Selecting the attribute group (headache=yes,
flu=yes, temperature=normal), the roughness measure is
β (T ′temperature=normal) = 0.67. If the threshold is set at
b = 0.75, the roughness measure beta(T ′) < b, considered

small. We can then calculate the reduct set with these deci-
sion rules:

f lu = yes → temperature = high (14)
f lu = yes → temperature = veryhigh

Therefore, we can use either high or very high for the
missing temperature value. Since high is the most frequent,
the imputed value is determined to be temperature = high.

The application for missing value imputation using re-
arrangement is an answer to the question 4 raised in the Intro-
duction section.

Table 9: Imputation for missing value on temperature.

(a) A value on temperature is missing.

Case Condition Decision
headache temperature flu

e1 yes normal no
e2 yes high yes
e3 yes very high yes
e4 no normal no
e5 no high no
e6 no ∗ yes
e7 no high yes
e8 no very high no

(b) Rearrangement with cases of complete data.

Case Condition Decision
headache flu temperature

e1 yes no normal
e2 yes yes high
e3 yes yes very high
e4 no no normal
e5 no no high
e7 no yes high
e8 no no very high

7. Experiment
We compared the attribute rearrangement approach

with two other missing value imputation methods (most com-
mon value method and concept most common value) on a
small data set about breast cancer collected in a hospital, in
which about 30 cases were included. The data and attributes
are shown in Table 10.

Three tests were conducted to compare the proposed
approach with other two methods. In test 1, we remove some
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values in the attribute “Age” randomly to make them miss-
ing, and then impute the missing attribute values by rear-
rangement approach, most common value method and con-
cept most common value respectively, and compare the accu-
racy of the three imputation methods. In tests 2 and 3, we treat
the attribute “Body-fat” and “Cholesterol” in the same way as
in test 1. The accuracy rates using the three methods from the
three tests are listed in Table 11 showing that rearrangement
approach performed better than the other two.

Table 10: Breast cancer data from a hospital.
No Age Body-fat Cholesterol Breast Cancer
1 29-41 18-28 188-197 No
2 42-56 18-28 198-320 No
3 42-56 29-37 198-320 Yes
4 29-41 29-37 198-320 Yes
5 57-64 18-28 198-320 No
6 42-56 18-28 188-197 Yes
7 29-41 18-28 188-197 No
8 42-56 29-37 198-320 Yes
9 57-64 29-37 198-320 Yes
10 57-64 18-28 188-197 No
· · · · · · · · · · · · · · ·

Table 11: Accuracy rates of 3 missing value imputation methods.
Attribute with Imputation Methods
Missing Value rearrange- most com- concept most

ment mon value common value
Age 0.65 0.56 0.58

Body-fat 0.75 0.50 0.58
Cholesterol 0.78 0.48 0.56

8. Conclusion
Rough set theory as a mathematical model for handling

data with uncertainty has widely used in many application do-
mains in the last two decades. The basic hypothesis of rough
set theory is that the data set with uncertainty can be formally
represented by a pair of approximations that are used to derive
condition→ decision rules. In this paper, we proposed the
idea of rearrangement of attributes to explore the logical rela-
tions relations (may be considered “causal” relations) among
the attributes. Roughness of rearrangements are calculated
and optimal logical attribute flows are determined based on
the roughness measures. With rearrangement of the missing-
value-attribute becoming the decision attribute, the optimal
logical attribute flows are used to determine if the decision
rules deducted from rough set theory should be used for miss-
ing data imputation.

This paper is a preliminary study of the problem ad-
dressed. We are currently working on experiments of apply-
ing the method to more real data sets, hopefully of relatively

large sizes, and establishing evaluation criteria to measure the
goodness of the imputation results.
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